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1) The function f(x) is clearly continuous for all x 6= 0, 1. Indeed, for x 6= 0, 1, f(x) is a

sum, product or a quotient of continuous functions whose denominator is nonzero. To check

what happens in x = 0, we compute

lim
x→0−

f(x) = lim
x→0−

eax − e−ax

bx
= lim

x→0−

aeax + ae−ax

b
=

2a

b

Here, the second equality follows from L’hopital’s rule, since the limit is of type 0
0
. To

compute the limit limx→0+ f(x) we notice that |x| = x for x > 0. Hence

lim
x→0+

f(x) = lim
x→0+

(
x

x
+

x3 − 1

x− 1

)
= lim

x→0+

(
1 +

x3 − 1

x− 1

)
= 2

For f(x) to be continuous at x = 0 we need to have limx→0− f(x) = limx→0+ f(x) = f(0).

Hence we get the equation 2a
b

= c = 2. To check the point x = 1, we compute

lim
x→1−

f(x) = lim
x→1−

(
x

x
+

x3 − 1

x− 1

)
= lim

x→1−

(
1 +

(x− 1)(x2 + x + 1)

x− 1

)
= lim

x→1−
(1+x2+x+1) = 4

Since limx→1+ f(x) = b, then we must have b = 4. Hence the answer is a = b = 4 and c = 2.

2) Write f(x) = Ax−1/2 + Bx1/2. Then f ′(x) = −1
2
Ax−3/2 + 1

2
Bx−1/2 = x−3/2

2
(−A+ Bx).

It is given that f(x) has a local minimum at the point x = 9. Hence f ′(9) = 0. From this

we deduce that −A + 9B = 0 or A = 9B. Thus f(x) = 9Bx−1/2 + Bx1/2. Since the value of

the function at the minimum point is 6, this means that the point (9, 6) is on the graph of

the function. Hence 6 = 9B9−1/2 + B91/2, from which we deduce that B = 1. Hence A = 9.

3) a) Denote y = (3x + 4x)1/x. Taking logarithm in both sides we obtain lny = ln(3x+4x)
x

.

We have

lim
x→∞

ln(3x + 4x)

x
= lim

x→∞
3xln3 + 4xln4

3x + 4x

1



where the equality is obtained using L’hopital’s rule. We can use this rule since the limit on

the left is of type ∞
∞ . We also used the formula (ax)′ = axlna. Pulling out the factor 4x we

obtain

lim
x→∞

3xln3 + 4xln4

3x + 4x
= lim

x→∞
4x(

(
3
4

)x
ln3 + ln4)

4x(
(

3
4

)x
+ 1)

= lim
x→∞

(
(

3
4

)x
ln3 + ln4)

(
(

3
4

)x
+ 1)

Since limx→∞
(

3
4

)x
= 0, we obtain

lim
x→∞

(
(

3
4

)x
ln3 + ln4)

(
(

3
4

)x
+ 1)

=
0 + ln4

0 + 1
= ln4

To summarize, we obtain limx→∞ lny = ln4. Since the logarithm is continuous, we obtain

ln limx→∞ y = ln4. Hence limx→∞ y = 4, or limx→∞(3x + 4x)1/x = 4.

b) Close to zero, for example you can take the interval (−1
4
, 1

4
), the values of 2x− 1 are

negative, and the values of 2x+1 are positive. Hence, close to zero we have |2x−1| = −(2x−1)

and |2x + 1| = 2x + 1. Hence,

lim
x→0

|2x− 1| − |2x + 1|
x

= lim
x→0

−(2x− 1)− (2x + 1)

x
= lim

x→0

−4x

x
= −4

4) To find inflection points we compute the second derivative. Notice that the function is

defined for all x > 0. We have y′ = 1
x
− 1

x+1
− 1

(x+1)2
. Hence y′′ = − 1

x2 + 1
(x+1)2

+ 2
(x+1)3

. Thus

y′′ = −(x+1)3+x2(x+1)+2x2

x2(x+1)3
= − 3x+1

x2(x+1)3
. Hence, the only possible inflection point is x = −1

3
.

However, since the function is defined for x > 0, it is clearly not an inflection point. Thus,

y has no inflection points.

To study the asymptotes, we notice that since the function is defined for x > 0, then the

only possibilities are at x = 0 and at ∞. At x = 0 we have limx→0+(lnx− ln(x+1)+ 1
x+1

) =

−∞. This follows from the fact that limx→0+ ln(x + 1) = 0 and limx→0+
1

x+1
= 1 and

limx→0+ lnx = −∞.

At ∞ we have

a = lim
x→∞

f(x)

x
= lim

x→∞

(
lnx

x
− ln(x + 1)

x
+

1

x(x + 1)

)

We have limx→∞ lnx
x

= limx→∞ 1
x

= 0 where the first equality follows using L’hopital’s rule.

Similarly, limx→∞
ln(x+1)

x
= limx→∞ 1

x+1
= 0. Finally, limx→∞ 1

x(x+1)
= 0. Thus a = 0. Hence,

using the identity lnx− ln(x + 1) = ln x
x+1

we obtain

b = lim
x→∞

(f(x)− ax) = lim
x→∞

f(x) = lim
x→∞

(ln
x

x + 1
+

1

x + 1
) = lim

x→∞
ln

x

x + 1
+ lim

x→∞
1

x + 1
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The right most limit is zero, and limx→∞ ln x
x+1

= ln limx→∞ x
x+1

= ln1 = 0. Thus b = 0.

Hence, the line y = 0 is an asymptote for f(x) at ∞.

5) a) To show that f(x) is continuous at x = c, we need to prove that limx→c f(x) = f(c).

It is given that for all x we have |f(x)− f(c)| ≤ 2009|x− c|. This is equivalent to

−2009|x− c| ≤ f(x)− f(c) ≤ 2009|x− c|

Applying the Sandwich theorem, since limx→c |x − c| = 0, we deduce that limx→c(f(x) −
f(c)) = 0. Since f(c) is constant with respect to x, this is the same as limx→c f(x) = f(c).

Hence f(x) is continuous at x = c.

b) The function f(x) need not have a derivative at x = c. As an example, choose f(x) = |x|
and c = 0. Then the inequality |f(x)− f(c)| ≤ 2009|x− c| reduces to |x| ≤ 2009|x| which is

clearly true. However, as shown in class f(x) = |x| has no derivative at x = 0.

6) Assume that the function f(x) = 6x4 − 7x + 1 has at least three roots. Let a < b < c

be three roots of f(x). Apply Rolle’s theorem twice. First apply it to the interval [a, b].

Since f(a) = f(b) = 0 and since f(x) is a polynomial, we deduce from Rolle’s theorem that

there is a point x1 ∈ (a, b) such that f ′(x1) = 0. Similarly, applying Rolle’s theorem to [b, c],

we obtain a point x2 ∈ (b, c) such that f ′(x2) = 0. Clearly x1 6= x2. In other words, f ′(x)

has at least two distinct roots. However, f ′(x) = 24x3− 7 and hence f ′(x) = 0 has only one

solution, which means that f ′(x) has only one root. Thus, we derived a contradiction, and

hence f(x) has at most two roots.

7) Let −2 < x < 4, and apply the Mean Value Theorem to the function f(x) in the

interval [−2, x]. Thus, there exists a point c ∈ (−2, x) such that

f(x)− f(−2)

x− (−2)
= f ′(c)

This is equivalent to f(x)− 1 = f ′(c)(x + 2) Taking absolute value, we obtain |f(x)− 1| =
|f ′(c)||x + 2| ≤ 5(x + 2). The last inequality follows from the fact that |f ′(x)| ≤ 5 for all

x ∈ [−2, 4], and from the fact that x + 2 is positive for all x ∈ [−2, 4]. The inequality

|f(x) − 1| ≤ 5(x + 2) is equivalent to −5(x + 2) ≤ f(x) − 1 ≤ 5(x + 2) or to −5x − 10 ≤
f(x)− 1 ≤ 5x + 10 or −5x− 9 ≤ f(x) ≤ 5x + 11.
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