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1) The function f(x) is clearly continuous for all = # 0, 1. Indeed, for = # 0,1, f(z) is a
sum, product or a quotient of continuous functions whose denominator is nonzero. To check

what happens in x = 0, we compute
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Here, the second equality follows from L’hopital’s rule, since the limit is of type %. To

compute the limit lim, .o+ f(z) we notice that |x| = x for > 0. Hence
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For f(z) to be continuous at = 0 we need to have lim, .o~ f(z) = lim, o+ f(z) = f(0).

Hence we get the equation %‘1 = ¢ = 2. To check the point x = 1, we compute
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Since lim,_,1+ f(z) = b, then we must have b = 4. Hence the answer is a = b = 4 and ¢ = 2.

2) Write f(z) = Ax~"/2+ Ba'/2. Then f'(z) = —2Az=3/? 4+ 1Bay~1/? = 2% (_ A+ Bx).
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It is given that f(x) has a local minimum at the point x = 9. Hence f'(9) = 0. From this
we deduce that —A + 9B =0 or A = 9B. Thus f(x) = 9Bx~'/? + Bx'/2. Since the value of
the function at the minimum point is 6, this means that the point (9,6) is on the graph of
the function. Hence 6 = 9B9~1/2 + B9'/2, from which we deduce that B = 1. Hence A = 9.

3) a) Denote y = (37 + 4%)1/%. Taking logarithm in both sides we obtain Iny = w.
We have
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where the equality is obtained using L’hopital’s rule. We can use this rule since the limit on
the left is of type 2. We also used the formula (a”)" = a”Ina. Pulling out the factor 4* we

obtain . .
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Since lim,_, (%)x = 0, we obtain
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To summarize, we obtain lim, .., Iny = In4. Since the logarithm is continuous, we obtain
Inlim, .o y = Ind. Hence lim, oo y = 4, or lim, (3% +47)/* = 4.

b) Close to zero, for example you can take the interval (—1, 1), the values of 2z — 1 are
negative, and the values of 2241 are positive. Hence, close to zero we have [2z—1| = —(2z—1)

and |2z + 1| = 2z + 1. Hence,
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4) To find inflection points we compute the second derivative. Notice that the function is

defined for all xz > 0. We have 3/ = 5 — x%l — (:c+1 . Hence 3" xg + (IH)Q + = (:c+1 . Thus
Yy = 7($+1)m;(§ ﬁ;l)“w = —962?221})3. Hence, the only possible inflection point is # = —3.

However, since the function is defined for > 0, it is clearly not an inflection point. Thus,
y has no inflection points.

To study the asymptotes, we notice that since the function is defined for z > 0, then the

only possibilities are at # = 0 and at co. At z = 0 we have lim,_o+ (Inz —In(z +1) + =) =
—o0o. This follows from the fact that lim, .o+ In(z + 1) = 0 and lim, g+ #1 = 1 and
lim,_ o+ Inx = —o0.

At oo we have
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We have lim, o 2F = lim, . % = O where the first equality follows using L’hopital’s rule.

Similarly, lim,_, w = limy 0o 757 +1 = 0. Finally, lim,_. m = 0. Thus a = 0. Hence,
using the identity Inz — In(x + 1) = In7; we obtain
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The right most limit is zero, and lim, . lngCL+1 = Inlim,_ Z% = Inl = 0. Thus b = 0.

Hence, the line y = 0 is an asymptote for f(x) at co.

5) a) To show that f(z) is continuous at © = ¢, we need to prove that lim,_.. f(z) = f(c).
It is given that for all = we have |f(z) — f(c)| < 2009]|z — ¢|. This is equivalent to

—2009|x — ¢| < f(z) — f(c) <2009|z — |

Applying the Sandwich theorem, since lim,_..|z — ¢| = 0, we deduce that lim, ..(f(z) —
f(c)) = 0. Since f(c) is constant with respect to z, this is the same as lim,_.. f(z) = f(c).
Hence f(x) is continuous at = = c.

b) The function f(x) need not have a derivative at x = c¢. As an example, choose f(x) = |z|
and ¢ = 0. Then the inequality |f(z) — f(c)| < 2009|z — ¢| reduces to |z| < 2009|z| which is

clearly true. However, as shown in class f(x) = |z| has no derivative at x = 0.

6) Assume that the function f(x) = 6x? — 7z + 1 has at least three roots. Let a < b < ¢
be three roots of f(x). Apply Rolle’s theorem twice. First apply it to the interval [a,b].
Since f(a) = f(b) = 0 and since f(z) is a polynomial, we deduce from Rolle’s theorem that
there is a point z; € (a, b) such that f'(z1) = 0. Similarly, applying Rolle’s theorem to [b, ],
we obtain a point x5 € (b, c¢) such that f'(xz9) = 0. Clearly z; # x2. In other words, f'(x)
has at least two distinct roots. However, f’(x) = 242® — 7 and hence f’(x) = 0 has only one
solution, which means that f’(x) has only one root. Thus, we derived a contradiction, and

hence f(z) has at most two roots.

7) Let —2 < = < 4, and apply the Mean Value Theorem to the function f(z) in the

interval [—2, z]. Thus, there exists a point ¢ € (=2, z) such that

flx) = f(=2)
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This is equivalent to f(z) — 1 = f’(c)(z + 2) Taking absolute value, we obtain |f(x) — 1| =
|f'(c)]|x + 2| < 5(z +2). The last inequality follows from the fact that |f'(z)] < 5 for all
x € [-2,4], and from the fact that x + 2 is positive for all x € [—2,4]. The inequality
|f(z) — 1] < 5(z +2) is equivalent to —5(z +2) < f(z) —1 < 5(z +2) or to —bz — 10 <
f(z) =1 <bzx+10or =5z —9 < f(x) < 5z + 11.



