Solution for Final in Calculus A

Moad A 2009

1) The function $f(x)$ is clearly continuous for all $x \neq 0,1$. Indeed, for $x \neq 0,1, f(x)$ is a sum, product or a quotient of continuous functions whose denominator is nonzero. To check what happens in $x=0$, we compute

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{e^{a x}-e^{-a x}}{b x}=\lim _{x \rightarrow 0^{-}} \frac{a e^{a x}+a e^{-a x}}{b}=\frac{2 a}{b}
$$

Here, the second equality follows from L'hopital's rule, since the limit is of type $\frac{0}{0}$. To compute the limit $\lim _{x \rightarrow 0^{+}} f(x)$ we notice that $|x|=x$ for $x>0$. Hence

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{x}{x}+\frac{x^{3}-1}{x-1}\right)=\lim _{x \rightarrow 0^{+}}\left(1+\frac{x^{3}-1}{x-1}\right)=2
$$

For $f(x)$ to be continuous at $x=0$ we need to have $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$. Hence we get the equation $\frac{2 a}{b}=c=2$. To check the point $x=1$, we compute
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(\frac{x}{x}+\frac{x^{3}-1}{x-1}\right)=\lim _{x \rightarrow 1^{-}}\left(1+\frac{(x-1)\left(x^{2}+x+1\right)}{x-1}\right)=\lim _{x \rightarrow 1^{-}}\left(1+x^{2}+x+1\right)=4$
Since $\lim _{x \rightarrow 1^{+}} f(x)=b$, then we must have $b=4$. Hence the answer is $a=b=4$ and $c=2$.
2) Write $f(x)=A x^{-1 / 2}+B x^{1 / 2}$. Then $f^{\prime}(x)=-\frac{1}{2} A x^{-3 / 2}+\frac{1}{2} B x^{-1 / 2}=\frac{x^{-3 / 2}}{2}(-A+B x)$. It is given that $f(x)$ has a local minimum at the point $x=9$. Hence $f^{\prime}(9)=0$. From this we deduce that $-A+9 B=0$ or $A=9 B$. Thus $f(x)=9 B x^{-1 / 2}+B x^{1 / 2}$. Since the value of the function at the minimum point is 6 , this means that the point $(9,6)$ is on the graph of the function. Hence $6=9 B 9^{-1 / 2}+B 9^{1 / 2}$, from which we deduce that $B=1$. Hence $A=9$.
3) a) Denote $y=\left(3^{x}+4^{x}\right)^{1 / x}$. Taking logarithm in both sides we obtain $\ln y=\frac{\ln \left(3^{x}+4^{x}\right)}{x}$. We have

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(3^{x}+4^{x}\right)}{x}=\lim _{x \rightarrow \infty} \frac{3^{x} \ln 3+4^{x} \ln 4}{3^{x}+4^{x}}
$$

where the equality is obtained using L'hopital's rule. We can use this rule since the limit on the left is of type $\frac{\infty}{\infty}$. We also used the formula $\left(a^{x}\right)^{\prime}=a^{x} \ln a$. Pulling out the factor 4^{x} we obtain

$$
\lim _{x \rightarrow \infty} \frac{3^{x} \ln 3+4^{x} \ln 4}{3^{x}+4^{x}}=\lim _{x \rightarrow \infty} \frac{4^{x}\left(\left(\frac{3}{4}\right)^{x} \ln 3+\ln 4\right)}{4^{x}\left(\left(\frac{3}{4}\right)^{x}+1\right)}=\lim _{x \rightarrow \infty} \frac{\left(\left(\frac{3}{4}\right)^{x} \ln 3+\ln 4\right)}{\left(\left(\frac{3}{4}\right)^{x}+1\right)}
$$

Since $\lim _{x \rightarrow \infty}\left(\frac{3}{4}\right)^{x}=0$, we obtain

$$
\lim _{x \rightarrow \infty} \frac{\left(\left(\frac{3}{4}\right)^{x} \ln 3+\ln 4\right)}{\left(\left(\frac{3}{4}\right)^{x}+1\right)}=\frac{0+\ln 4}{0+1}=\ln 4
$$

To summarize, we obtain $\lim _{x \rightarrow \infty} \ln y=\ln 4$. Since the logarithm is continuous, we obtain $\ln \lim _{x \rightarrow \infty} y=\ln 4$. Hence $\lim _{x \rightarrow \infty} y=4$, or $\lim _{x \rightarrow \infty}\left(3^{x}+4^{x}\right)^{1 / x}=4$.
b) Close to zero, for example you can take the interval $\left(-\frac{1}{4}, \frac{1}{4}\right)$, the values of $2 x-1$ are negative, and the values of $2 x+1$ are positive. Hence, close to zero we have $|2 x-1|=-(2 x-1)$ and $|2 x+1|=2 x+1$. Hence,

$$
\lim _{x \rightarrow 0} \frac{|2 x-1|-|2 x+1|}{x}=\lim _{x \rightarrow 0} \frac{-(2 x-1)-(2 x+1)}{x}=\lim _{x \rightarrow 0} \frac{-4 x}{x}=-4
$$

4) To find inflection points we compute the second derivative. Notice that the function is defined for all $x>0$. We have $y^{\prime}=\frac{1}{x}-\frac{1}{x+1}-\frac{1}{(x+1)^{2}}$. Hence $y^{\prime \prime}=-\frac{1}{x^{2}}+\frac{1}{(x+1)^{2}}+\frac{2}{(x+1)^{3}}$. Thus $y^{\prime \prime}=\frac{-(x+1)^{3}+x^{2}(x+1)+2 x^{2}}{x^{2}(x+1)^{3}}=-\frac{3 x+1}{x^{2}(x+1)^{3}}$. Hence, the only possible inflection point is $x=-\frac{1}{3}$. However, since the function is defined for $x>0$, it is clearly not an inflection point. Thus, y has no inflection points.

To study the asymptotes, we notice that since the function is defined for $x>0$, then the only possibilities are at $x=0$ and at ∞. At $x=0$ we have $\lim _{x \rightarrow 0^{+}}\left(\ln x-\ln (x+1)+\frac{1}{x+1}\right)=$ $-\infty$. This follows from the fact that $\lim _{x \rightarrow 0^{+}} \ln (x+1)=0$ and $\lim _{x \rightarrow 0^{+}} \frac{1}{x+1}=1$ and $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$.

At ∞ we have

$$
a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty}\left(\frac{\ln x}{x}-\frac{\ln (x+1)}{x}+\frac{1}{x(x+1)}\right)
$$

We have $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1}{x}=0$ where the first equality follows using L'hopital's rule. Similarly, $\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{x}=\lim _{x \rightarrow \infty} \frac{1}{x+1}=0$. Finally, $\lim _{x \rightarrow \infty} \frac{1}{x(x+1)}=0$. Thus $a=0$. Hence, using the identity $\ln x-\ln (x+1)=\ln \frac{x}{x+1}$ we obtain

$$
b=\lim _{x \rightarrow \infty}(f(x)-a x)=\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}\left(\ln \frac{x}{x+1}+\frac{1}{x+1}\right)=\lim _{x \rightarrow \infty} \ln \frac{x}{x+1}+\lim _{x \rightarrow \infty} \frac{1}{x+1}
$$

The right most limit is zero, and $\lim _{x \rightarrow \infty} \ln \frac{x}{x+1}=\ln \lim _{x \rightarrow \infty} \frac{x}{x+1}=\ln 1=0$. Thus $b=0$. Hence, the line $y=0$ is an asymptote for $f(x)$ at ∞.
5) a) To show that $f(x)$ is continuous at $x=c$, we need to prove that $\lim _{x \rightarrow c} f(x)=f(c)$. It is given that for all x we have $|f(x)-f(c)| \leq 2009|x-c|$. This is equivalent to

$$
-2009|x-c| \leq f(x)-f(c) \leq 2009|x-c|
$$

Applying the Sandwich theorem, since $\lim _{x \rightarrow c}|x-c|=0$, we deduce that $\lim _{x \rightarrow c}(f(x)-$ $f(c))=0$. Since $f(c)$ is constant with respect to x, this is the same as $\lim _{x \rightarrow c} f(x)=f(c)$. Hence $f(x)$ is continuous at $x=c$.
b) The function $f(x)$ need not have a derivative at $x=c$. As an example, choose $f(x)=|x|$ and $c=0$. Then the inequality $|f(x)-f(c)| \leq 2009|x-c|$ reduces to $|x| \leq 2009|x|$ which is clearly true. However, as shown in class $f(x)=|x|$ has no derivative at $x=0$.
6) Assume that the function $f(x)=6 x^{4}-7 x+1$ has at least three roots. Let $a<b<c$ be three roots of $f(x)$. Apply Rolle's theorem twice. First apply it to the interval $[a, b]$. Since $f(a)=f(b)=0$ and since $f(x)$ is a polynomial, we deduce from Rolle's theorem that there is a point $x_{1} \in(a, b)$ such that $f^{\prime}\left(x_{1}\right)=0$. Similarly, applying Rolle's theorem to $[b, c]$, we obtain a point $x_{2} \in(b, c)$ such that $f^{\prime}\left(x_{2}\right)=0$. Clearly $x_{1} \neq x_{2}$. In other words, $f^{\prime}(x)$ has at least two distinct roots. However, $f^{\prime}(x)=24 x^{3}-7$ and hence $f^{\prime}(x)=0$ has only one solution, which means that $f^{\prime}(x)$ has only one root. Thus, we derived a contradiction, and hence $f(x)$ has at most two roots.
7) Let $-2<x<4$, and apply the Mean Value Theorem to the function $f(x)$ in the interval $[-2, x]$. Thus, there exists a point $c \in(-2, x)$ such that

$$
\frac{f(x)-f(-2)}{x-(-2)}=f^{\prime}(c)
$$

This is equivalent to $f(x)-1=f^{\prime}(c)(x+2)$ Taking absolute value, we obtain $|f(x)-1|=$ $\left|f^{\prime}(c)\right||x+2| \leq 5(x+2)$. The last inequality follows from the fact that $\left|f^{\prime}(x)\right| \leq 5$ for all $x \in[-2,4]$, and from the fact that $x+2$ is positive for all $x \in[-2,4]$. The inequality $|f(x)-1| \leq 5(x+2)$ is equivalent to $-5(x+2) \leq f(x)-1 \leq 5(x+2)$ or to $-5 x-10 \leq$ $f(x)-1 \leq 5 x+10$ or $-5 x-9 \leq f(x) \leq 5 x+11$.

